Nanoscaffolds can play a central role in organ regeneration as they act as templates and guides for cell proliferation, differentiation and tissue growth. It is also important to protect these fragile cells from the harsh environment in which they are transplanted. The research team created the scaffold to provide a substrate for cell adhesion and migration and to influence the survival of transplanted cells or the invasion of cells from surrounding tissue. The SAPNS they developed appear to slow the growth rate and differentiation of the cells, allowing the cells time to acclimate to their new environment. That delay is very important when the immune system tries attacking cells when they are placed in vivo.
Loading....